

Tetrahedron Letters Vol. 45, No. 26, 2004

Contents

COMMUNICATIONS

Stereoselective routes to 3-hydroxy and 3,4-dihydroxy derivatives of 2-aminocyclohexanecarboxylic acid

pp 5007-5009

Ishmael B. Masesane* and Patrick G. Steel

Intramolecular cyclization reactions of aziridines with π -nucleophiles

pp 5011-5014

Stephen C. Bergmeier,* Steven J. Katz, Junfeng Huang, Howard McPherson, Patrick J. Donoghue and Damon D. Reed

$$R^3$$
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^2
 R^3
 R^2
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3

Synthesis of the tetracyclic core of the bisabosquals

pp 5015-5018

Barry B. Snider* and Mercedes Lobera

The tetracyclic core 16 of bisabosqual A (1) was prepared by a short sequence.

Synthesis of chiral 2,2'-dipyridylamines and their use in the copper-catalyzed asymmetric allylic oxidation of cyclohexene

pp 5019-5021

Carsten Bolm,* Jean-Cédric Frison, Jacques Le Paih and Christian Moessner

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Vinylogous Mannich reactions. Additions of trimethylsilyloxyfuran to fluorinated aldimines

pp 5023-5025

Maria Vittoria Spanedda, Michèle Ourévitch, Benoit Crousse,* Jean-Pierre Bégué and Danièle Bonnet-Delpon*

The modified 'phosphine imide' reaction: a safe and soft alternative ureas synthesis

pp 5027-5029

Stanislaw Porwanski, Stephane Menuel, Xavier Marsura and Alain Marsura*

$$R_{1}$$
-NH₂
$$\xrightarrow{i \text{ CCl}_{4}.P(\text{Ph})_{3}/\text{Et}_{3}\text{N/CH}_{2}\text{Cl}_{2}/\text{Ar}} \xrightarrow{R_{1}\text{-HN}} \xrightarrow{N\text{H--R}} R_{1}$$

A modified 'phosphine imide reaction' is described as a safe, easy and efficient route to convert primary amines and L-aminoesters into corresponding ureas.

Lipase-catalysed selective monoacylation of 1,n-diols with vinyl acetate

pp 5031-5033

Victoria Framis, Francisco Camps and Pere Clapés*

HO
$$\stackrel{\text{Vinyl acetate}}{\text{Lipase, 25°C}}$$
 HO $\stackrel{\text{O}}{\text{no}}$ $n = 5, 70\%$ $n = 8, 60\%$

A simple enzymatic methodology for the selective monoacetylation of 1,n-diols (n = 5,8) using immobilised *Thermomyces lanuginosus* lipase in different organic media is reported.

Use of Stang's reagent, PhI(CN)OTf, to promote Pummerer-like oxidative cyclization of 2-(phenylthio)indoles

pp 5035-5037

Ken S. Feldman* and Daniela Boneva Vidulova

Synthesis of (+)- and (-)-isocarvone

pp 5039-5041

Miguel A. González, Subhash Ghosh, Fatima Rivas, Derek Fischer and Emmanuel A. Theodorakis*

The first synthesis of isocarvone (+)-2 and (-)-2 starting from commercially available R-(-)-carvone is described. These materials provide new chiral building blocks that could be used in total synthesis of natural products and related optically active compounds of interest.

Convenient synthesis of arylpropargyl aldehydes and 4-aryl-3-butyn-2-ones from arylacetylenes and amide acetals

pp 5043-5046

Ka Young Lee, Mi Jung Lee, Saravanan GowriSankar and Jae Nyoung Kim*

Enantioselective total synthesis of enokipodins A-D

pp 5047-5049

Shigefumi Kuwahara* and Mana Saito

$$\begin{array}{c} X \\ \text{OMe} \\ \text{OMe} \\ X = \text{H: (-)-enokipodin B} \\ X = \text{OH: (-)-enokipodin D} \\ \end{array} \begin{array}{c} X = \text{H: (+)-enokipodin A} \\ X = \text{OH: (-)-enokipodin C} \\ \end{array}$$

Asymmetric 1,4-addition of alkenylzir conium reagents to α,β -unsaturated ketones catalyzed by chiral rhodium complexes

pp 5051-5055

Shuichi Oi,* Takashi Sato and Yoshio Inoue*

Highly enantioselective 1,4-addition of alkenylzirconocene chlorides to α,β -enones was found to be catalyzed by a chiral rhodium complex generated from [Rh(cod)(MeCN)₂]BF₄ and (S)-BINAP.

Protection of poorly nucleophilic pyrroles

pp 5057-5060

Scott T. Handy,* Jesse J. Sabatini, Yanan Zhang and Inessa Vulfova

A convenient method for the introduction of carbamate protecting groups on the ring nitrogen of electron-deficient pyrroles has been developed.

Mild electrophilic halogenation of chloropyridines using CCl_4 or C_2Cl_6 under basic phase transfer conditions

pp 5061-5063

Ashutosh V. Joshi, Mubeen Baidossi, Nida Qafisheh, Elsa Chachashvili and Yoel Sasson*

Novel conditions for the Juliá-Colonna epoxidation reaction providing efficient access to chiral, nonracemic epoxides

pp 5065-5067

Thomas Geller, Arne Gerlach, Christa M. Krüger and H.-Christian Militzer*

Scoping the triphasic/PTC conditions for the Juliá-Colonna epoxidation reaction

pp 5069-5071

Thomas Geller,* Christa M. Krüger and H.-Christian Militzer

Asymmetric epoxidation of some arylalkenyl sulfones using a modified Juliá-Colonna procedure

pp 5073-5075

Jose-Maria Lopez-Pedrosa, Michael R. Pitts, Stanley M. Roberts,* Shanthini Saminathan and John Whittall

A polyamino acid/peroxide-containing gel efficiently oxidizes a selection of α,β -unsaturated ketones and arylvinyl sulfones to furnish the corresponding optically active epoxides having good to excellent optical purity.

A novel acylated quercetin tetraglycoside from oolong tea (Camelia sinensis) extracts

pp 5077-5080

Rie Mihara, Tohru Mitsunaga,* Yuko Fukui, Masaaki Nakai, Nahoko Yamaji and Hiroshi Shibata

A novel acylated quercetin tetraglycoside namely quercetin 3-O-(2^G -p-coumaroyl- 3^G -O- β -L-arabinosyl- 3^R -O- β -D-glucosylrutinoside) was isolated from oolong tea extracts.

Photoactive chemosensors 4: a Cu^{2+} protein cavity mimicking fluorescent chemosensor for selective Cu^{2+} recognition

pp 5081-5085

Sukhdeep Kaur and Subodh Kumar*

Fluorescent chemosensor 3 can sense Cu^{2+} ions (1–8 μ M) even in the presence of elevated levels of Ni^{2+} , Cd^{2+} , Zn^{2+} , Hg^{2+} , Ag^{+} and Pb^{2+} (5000 μ M).

A stereoselective, multiple-component approach to α - β -substituted- β -amino carbonyl derivatives Avrum L. Joffe, Timothy M. Thomas and James C. Adrian, Jr.*

pp 5087-5090

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\\\ \\ \\ \end{array} \begin{array}{c} \\$$

Unforeseen formation of 2-bromo-3-hydroxybenzaldehyde by bromination of 3-hydroxybenzaldehyde Willem A. L. van Otterlo, Joseph P. Michael, Manuel A. Fernandes and Charles B. de Koning*

pp 5091-5094

Contrary to literature reports, bromination of 3-hydroxybenzaldehyde can afford both 2-bromo-5-hydroxybenzaldehyde and 2-bromo-3-hydroxybenzaldehyde. The latter was converted into 2-(benzyloxy)-1-bromo-5-methoxy-7-methylnaphthalene.

Phosphonyl radical addition to enol ethers. The stereoselective synthesis of cyclic ethers Christopher M. Jessop, Andrew F. Parsons,* Anne Routledge and Derek J. Irvine

pp 5095-5098

Amberlyst 15 catalyzed synthesis of indole-pyrazole based tri(hetero)arylmethanes Farhanullah, Ashoke Sharon, Prakas R. Maulik and Vishnu Ji Ram*

pp 5099-5102

$$R_1$$
 CHO

 R_1 CHO

 R_1 CHO

 R_1 R_1 R_2 R_3 R_4 R_5 R_7 R_8 R

Synthesis of BEDT-TTF derivatives with carboxylic ester and amide functionalities

pp 5103-5107

R. James Brown, Gemma Camarasa, Jon-Paul Griffiths, Peter Day and John D. Wallis*

Regiospecific synthesis of isopestacin, a naturally occurring isobenzofuranone antioxidant

pp 5109-5112

Pallab Pahari, Bidyut Senapati and Dipakranjan Mal*

Diprotonated hydrazones and oximes as reactive intermediates in electrochemical reductions

pp 5113-5115

M. S. Baymak, H. Celik, J. Ludvik, H. Lund and P. Zuman*

$$\begin{array}{c}
R \\
C = N - NR_{3}^{+} \\
H \\
R \\
C = NH - OH_{2}^{+}
\end{array}
+2e$$

$$\begin{array}{c}
R \\
C = NH \\
2H^{+} \\
2e
\end{array}$$

$$\begin{array}{c}
CH - NH_{2} \\
R
\end{array}$$

Synthesis of 3-substituted 8-hydroxy-3,4-dihydroisocoumarins via successive lateral and *ortho*-lithiations of 4,4-dimethyl-2-(o-tolyl)oxazoline

pp 5117-5120

Naruki Tahara, Tsutomu Fukuda and Masatomo Iwao*

Nitrobenzylation of α-carbonyl ester derivatives using TDAE approach

pp 5121-5124

Gamal Giuglio-Tonolo, Thierry Terme, Maurice Médebielle and Patrice Vanelle*

$$R = 0$$
 or $R = 0$.

A series of 2-hydroxy-propionic acid ethyl ester derivatives was prepared in good yields by reaction of o- and p-nitrobenzyl chlorides (1, 8) with various α -carbonyl esters in presence of tetrakis(dimethylamino) ethylene (TDAE).

Stereocontrolled synthesis of hydroxyethylamine isosteres via chiral sulfoxide chemistry

pp 5125-5129

Cristina Pesenti, Alberto Arnone, Paolo Arosio, Massimo Frigerio, Stefano V. Meille, Walter Panzeri, Fiorenza Viani and Matteo Zanda*

Activation and stabilization of aldimines by an *ortho*-trifluoromethyl substituent in direct vinylogous Mannich-type reactions

pp 5131–5133

Mark Lautens,* Eiji Tayama and Duy Nguyen

SO_3H -functionalized silica for acetalization of carbonyl compounds with methanol and tetrahydropyranylation of alcohols

pp 5135-5138

Ken-ichi Shimizu,* Eidai Hayashi, Tsuyoshi Hatamachi, Tatsuya Kodama and Yoshie Kitayama

Syntheses of 4-(1-alkynyl)-2(5H)-furanones and coumarins via the palladium catalyzed cross-coupling reactions of potassium alkynyltrifluoroborates

pp 5139-5141

George W. Kabalka,* Gang Dong and Bollu Venkataiah

$$Br$$
 $+$
 R
 BF_3K
 $Cat.$
 O
 O

An efficient synthesis of 4-(1-alkynyl)-2(5H)-furanones utilizing a palladium catalyzed coupling reaction of β -tetronic acid bromide with potassium alkynyltrifluoroborates has been developed.

Cyclopropylcarbinyl radicals as three-carbon insertion units: easy synthesis of C-15 macrocyclic ketones by three-carbon ring expansion

pp 5143-5145

Georg Rüedi* and Hans-Jürgen Hansen

(i)+

Promotion of one-pot Robinson annelation achieved by gradual pressure and temperature manipulation under supercritical conditions

pp 5147-5150

Hajime Kawanami* and Yutaka Ikushima

Me None-pot Robinson annelation
$$\frac{\text{Me}}{\text{None-pot}}$$
 $\frac{\text{Me}}{\text{None-pot}}$ $\frac{\text{None-pot}}{\text{None-pot}}$ $\frac{\text{Me}}{\text{None-pot}}$ $\frac{\text{None-pot}}{\text{None-pot}}$ $\frac{\text{None-pot}}{\text{Non$

The one-pot Robinson annelation from 2-methyl-cyclohexane-1,3-dione with 3-buten-2-one can be achieved in high yield (95%) and high selectivity (95%) by pressure and temperature manipulation using supercritical carbon dioxide in the presence of MgO catalyst, whose method could be applied for various ketones to synthesize fused polycyclic compounds.

$Efficient\ photolytic\ esterification\ of\ carboxylic\ acids\ with\ alcohols\ in\ perhalogenated\ methane$

pp 5151-5154

Jih Ru Hwu,* Chuan-Yi Hsu and Moti L. Jain

Esterification of carboxylic acids with various alcohols can be accomplished efficiently in CCl_4 by irradiation of the solution with UV light.

Studies toward Taxuspine X, a potent multidrug-resistance reversing agent, via ring closing metathesis strategy

pp 5155-5158

Michela L. Renzulli, Luc Rocheblave, Stanislava Avramova, Federico Corelli and Maurizio Botta*

Concise synthesis of stereodefined dienols and cyclopentadienes via direct addition of 1-bromomagnesiobutadienes and 1-lithiobutadienes to carbonyl compounds

pp 5159-5162

Hongyun Fang, Qiuling Song, Zhihui Wang and Zhenfeng Xi*

Toward the total synthesis of methyl isosartortuoate: construction of the backbone of the diene unit Peng Liu and Xingxiang Xu^{\ast}

pp 5163-5166

Synthesis of (\pm) -aporphine utilizing Pictet-Spengler and intramolecular phenol ortho-arylation reactions

pp 5167-5170

Gregory D. Cuny*

HO
$$N$$
 Ts Cy_3P Cs_2CO_3 $DMA, 110 °C$ $24 h$ (\pm) -aporphine

The azoles: effective catalysts for Baylis–Hillman reaction in basic water solution Sanzhong Luo, Xueling Mi, Peng George Wang and Jin-Pei Cheng*

pp 5171-5174

Self-reproduction of chirality on α -aminophosphonates: asymmetric synthesis of α -alkylated diethyl pyrrolidin-2-yl-phosphonate

pp 5175-5177

Mohamed Amedjkouh* and Kristina Westerlund

OTHER CONTENTS

Contributors to this issue Instructions to contributors p I pp III-VI

*Corresponding author

(1) Supplementary data available via ScienceDirect

COVER

The figure is derived from the paper *peri*-Interaction between diarylmethyl and diarylmethylium units in 1,8-disubstituted naphthalenes: preference of localized structure for the C–H bridged carbocation by Hidetoshi Kawai, Takayuki Nagasu, Takashi Takeda, Kenshu Fujiwara, Takashi Tsuji, Masakazu Ohkita, Jun-ichi Nishida and Takanori Suzuki, *Tetrahedron Letters* **2004**, *23*, 4553–4558.

Preference of the localized structure with a short contact of $C-H \cdot \cdot \cdot C^+$ rather than the delocalized 3-centered-2-electron bond was evidenced by the low-temperature X-ray analysis of the C-H bridged carbocation. © 2004 T. Suzuki. Published by Elsevier Ltd.

Full text of this journal is available, on-line from **ScienceDirect**. Visit **www.sciencedirect.com** for more information.

This journal is part of **ContentsDirect**, the *free* alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for **ContentsDirect** online at: http://contentsdirect.elsevier.com

Indexed/Abstracted in: AGRICOLA, Beilstein, BIOSIS Previews, CAB Abstracts, Chemical Abstracts, Chemical Engineering and Biotechnology Abstracts, Current Biotechnology Abstracts, Current Contents: Life Sciences, Current Contents: Physical, Chemical and Earth Sciences, Current Contents Search, Derwent Drug File, Ei Compendex, EMBASE/Excerpta Medica, Medline, PASCAL, Research Alert, Science Citation Index, SciSearch

